Chlorhexidine-Impregnated Sponges and Less Frequent Dressing Changes for Prevention of Catheter-Related Infections in Critically Ill Adults: A Randomized Controlled Trial

Jean-François Timsit; Carole Schwebel; Lila Bouadma; et al.

http://jama.ama-assn.org/cgi/content/full/301/12/1231
Chlorhexidine-Impregnated Sponges and Less Frequent Dressing Changes for Prevention of Catheter-Related Infections in Critically Ill Adults
A Randomized Controlled Trial

Jean-François Timsit, MD, PhD
Carole Schwebel, MD, PhD
Lila Bouadma, MD
Arnaud Geoffroy, MD
Maïté Garrouste-Orgeas, MD
Sebastian Pease, MD
Marie-Christine Herault, MD
Hakim Haouache, MD
Silvia Calvino-Gunther, RN
Brieuc Gestin, PhD
Laurence Armand-Lefevre, PharmD
Véronique Leflon, PharmD
Chantal Chaplain, PharmD
Adel Benali, MD
Adrien Francais, MSc
Christophe Adrie, MD, PhD
Jean-Ralph Zahar, MD
Marie Thuong, MD
Xavier Arrault, PharmD
Jacques Croize, PharmD
Jean-Christophe Lucet, MD, PhD
for the Dressing Study Group

PATIENTS ADMITTED TO THE INTENSIVE CARE UNIT (ICU) usually require insertion of central venous catheters (CVCs). In Europe, the incidence density of CVC-related bloodstream infections ranges from 1 to 3.1 per 1000 patient-days.1 In the United States, 15 million CVC-days are estimated to occur each year in ICU patients, as well as approximately 80,000

See also p 1285 and Patient Page.
We hypothesized that CHGIS dressings would decrease the rate of major catheter-related infections (CRIs), defined as catheter-related sepsis with or without bloodstream infection, and that a longer time between dressing changes would not increase the rate of major CRIs.

METHODS

Study Design

We conducted a multicenter, 2 × 2 factorial, randomized controlled trial to compare CHGIS vs standard dressings and to compare a strategy of changing unsoiled adherent dressings every 7 days vs the standard practice of every 3 days. The study was not blinded for the investigators or ICU staff but was blinded for the microbiologists processing the skin and catheter cultures and for the assessors.

Study Patients

From December 20, 2006, to May 20, 2008, we recruited patients in 7 ICUs (2 medical, 2 surgical, 3 medical-surgical) in 3 university and 2 general hospitals in France. Patients older than 18 years expected to require an artery (vascular) catheter and a CVC were included. In accordance with French law, the Grenoble University Hospital ethics committee approved the protocol. Data were collected from patients whose decision-making capacity was intact. In accordance with the Centers for Disease Control and Prevention recommendations, consent was obtained from patients whose decision-making capacity was intact. In accordance with French law, the Grenoble University Hospital ethics committee approved the protocol. Data were collected from patients whose decision-making capacity was intact. In accordance with French law, the Grenoble University Hospital ethics committee approved the protocol.

Studies in recipients of bone marrow transplants found no evidence that increasing the time between CVC dressing changes induced adverse effects. No data exist to determine whether the interval between CVC dressing changes can be safely extended in other populations.

Studies of the CHGIS have suggested a significant decrease in catheter colonization and a nonsignificant decrease in CVC-related bloodstream infections, indicating a need for a large randomized controlled trial.

Studies of recipients of bone marrow transplants found no evidence that increasing the time between CVC dressing changes induced adverse effects. No data exist to determine whether the interval between CVC dressing changes can be safely extended in other populations.

The aim of this study was to evaluate the respective effects of using CHGIS dressings and increasing the time between dressing changes in adult ICU patients.
Definitions and Primary Evaluation Criteria

Three definitions were used, according to French and US guidelines. First, catheter colonization was defined as a quantitative catheter-tip culture yielding at least 1000 colony-forming units (CFUs)/mL. Second, catheter-related clinical sepsis without bloodstream infection was defined as a combination of (1) fever (body temperature ≥38.5°C) or hypothermia (body temperature ≤36.5°C), (2) a catheter-tip culture yielding at least 10^3 CFUs/mL, (3) pus at the insertion site or resolution of clinical sepsis after catheter removal, and (4) absence of any other infectious focus. Third, catheter-related bloodstream infection was defined as a combination of (1) 1 or more positive peripheral blood cultures sampled immediately before or within 48 hours after catheter removal, (2) a quantitative catheter-tip culture testing positive for the same microorganisms (same species and same susceptibility pattern) or a differential time to positivity.

For semiquantitative insertion-site cultures, the insertion site was sampled before catheter removal by pressing a nutritive trypticase-soy agar plate (Count-tact; Biomerieux, Crapone, France) on the skin for 5 seconds, centering the plate on the insertion site. The plate was sent to the local microbiology laboratory and cultured for 48 hours. The number of microorganisms recovered from the surface area corresponding to that of the CHGIS was counted.

The microbiology technicians and biologists in charge of the catheter and skin cultures were blinded to study group assignment. A random sample of 25 microorganisms recovered from skin cultures in each study group was processed for identification and determination of minimal bactericidal concentration (MBC), using a variant of a previously described method.

When major CRI was suspected, 1 or more peripheral blood samples were collected for culturing within 48 hours before or after catheter removal. If the catheter-tip culture revealed colonization or if a blood culture sampled at the time of catheter removal tested positive, an investigator blinded to the study group reviewed the case report form and medical chart to collect all of the available information needed to prepare an independent blinded review.

The primary evaluation criterion for assessing noninferiority of the 7-day dressing change interval compared with the 3-day interval. The major CRI rate was the primary evaluation criterion for assessing differences between CHGIS and standard dressings. For the intention-to-treat analysis, uncultured catheters were classified as not colonized.

Secondary Evaluation Criteria

Secondary evaluation criteria were catheter-related bloodstream infection and skin colonization as assessed by the semiquantitative insertion-site skin culture at catheter removal. The condition of the skin was described on a standardized form by the nurse in charge of the patient at each dressing change and at catheter removal, using the International Contact Dermatitis Research Group system (0, normal skin; 1, mild redness only; 2, red and slightly thickened skin; 3, intense redness and swelling with coalesced large blisters or spreading reaction).

Number of Patients and Catheters

The main assumptions were that CHGIS would lead to a 60% decrease in the major CRI rate from a 4% rate in the control group and that 12% of catheters would be colonized in both dressing-change interval groups. Noninferiority for the comparison of alternative dressing changes was defined as the upper limit of the 2-sided 95% confidence interval (CI) being less than 3 percentage points. Based on data from the study ICUs, we hypothesized that each patient would have at least 2 catheters inserted. We used α = 0.05 and 1 – β = .80 to compute sample size. We planned to enroll 1600 patients.

Statistical Analysis

The primary analysis was performed in the intention-to-treat population, which included all patients except those who withdrew their consent to participate, in accordance with French law. No interim analysis was planned. We also conducted a per-protocol analysis in which only cultured catheters were taken into account to compare 3-day vs 7-day dressing change intervals. For the comparison of CHGIS vs no CHGIS (control), we included uncultured cath-

Patients underwent follow-up until 48 hours after ICU discharge. Catheters were immediately removed if no longer needed, usually before ICU discharge, or when a CRI was suspected. Catheter tips were cultured using a simplified quantitative broth dilution technique. In the few patients who needed to retain their CVCs (because of treatment requiring a CVC or unacceptable risk associated with insertion of a new CVC) after their ICU stay, the CVC was left in place and paired blood samples were drawn simultaneously via the catheter hub and from a peripheral venous site before ICU discharge for determination of the differential time to positivity.

For semiquantitative insertion-site cultures, the insertion site was sampled before catheter removal by pressing a nutritive trypticase-soy agar plate (Count-tact; Biomerieux, Crapone, France) on the skin for 5 seconds, centering the plate on the insertion site. The plate was sent to the local microbiology laboratory and cultured for 48 hours. The number of microorganisms recovered from the surface area corresponding to that of the CHGIS was counted.

The microbiology technicians and biologists in charge of the catheter and skin cultures were blinded to study group assignment. A random sample of 25 microorganisms recovered from skin cultures in each study group was processed for identification and determination of minimal bactericidal concentration (MBC), using a variant of a previously described method.

When major CRI was suspected, 1 or more peripheral blood samples were collected for culturing within 48 hours before or after catheter removal. If the catheter-tip culture revealed colonization or if a blood culture sampled at the time of catheter removal tested positive, an investigator blinded to the study group reviewed the case report form and medical chart to collect all of the available information needed to prepare an independent blinded review.

The primary analysis was performed in the intention-to-treat population, which included all patients except those who withdrew their consent to participate, in accordance with French law. No interim analysis was planned. We also conducted a per-protocol analysis in which only cultured catheters were taken into account to compare 3-day vs 7-day dressing change intervals. For the comparison of CHGIS vs no CHGIS (control), we included uncultured cath-

©2009 American Medical Association. All rights reserved.
etters if culturing for differential time to positivity23 was performed before catheter removal.

Characteristics of patients, catheters, and dressings are described as No. (%) or median (interquartile range [IQR]) for qualitative and quantitative variables and were compared between treatment groups using \(\chi^2 \) or Mann-Whitney tests, as appropriate. Kaplan-Meier curves of the risk of major CRIs and catheter colonization were plotted for each treatment group.

To take into account a possible clustering effect of multiple catheters per patient (with the cluster equating the patient), we used a marginal Cox model for clustered data. This model both takes into account the censored nature of the data and accounts for intracluster (intrapatient) dependence (\(\geq 1 \) catheter per patient), using a robust sandwich covariance estimate24 (PROC PHREG of SAS version 9.1; SAS Institute Inc, Cary, North Carolina). Analyses were stratified by ICU. The design of this factorial study assumed that the 2 study interventions did not interact. This assumption was confirmed by testing for a treatment interaction in the Cox model. Accordingly, we analyzed the CHGIS effect (vs control) and the 7-day dressing change interval effect (vs 3-day dressing interval) separately (at the margins), using similar techniques.25 We checked the proportional hazards assumption and looked for qualitative interactions between treatment effects and among treatment centers.26

To test noninferiority of the 7-day interval vs the 3-day interval between dressing changes, the 2-sided 95% CI was calculated for the true difference in the rate of significant catheter colonization. Noninferiority was defined as the upper limit of the 2-sided 95% CI being less than 3 percentage points. Tests were 2-tailed and unadjusted for multiple comparisons. According to previous recommendations,27 we performed a sensitivity analysis of the final result while making the assumption that all uncultured catheters were colonized, using the per-protocol population and various subpopulations. In this analysis, we tested noninferiority for 7-day dressing changes in the per-protocol population, arterial catheters only, venous catheters only, catheters in place at least 5 days, catheters with more than 1 unplanned dressing change, and catheters with at least 2 unplanned dressing changes.

Skin cultures were classified into 4 groups: sterile, less than 1 log\textsubscript{10} CFUs/plate, 1 to 2 log\textsubscript{10} CFUs/plate, and greater than 2 log\textsubscript{10} CFUs/plate. A Cochran-Armitage test for trend was used to compare skin colonization according to the evaluation criterion studied. The number of CFUs recovered from skin cultures and the MBCs with and without chlorhexidine were compared using a Mann-Whitney test.

Analyses were performed using SAS version 9.1 and R version 2.8.1 (R Foundation for Statistical Computing, Vienna, Austria). \(P \leq .05 \) was considered statistically significant.

RESULTS

Patients and Catheters

Of 2095 patients with at least 1 catheter, 1653 were enrolled, but 17 subsequently withdrew consent to participate, leaving 1636 available for inclusion in the intention-to-treat analysis (FIGURE 1), for a total of 3778 catheters and 28931 catheter-days. Patient and catheter characteristics are reported in **TABLE 1** and **TABLE 2**.

In the reference group treated without CHGIS dressings and with 3-day dressing changes, the catheter colonization rate was 11.5% (99 events, 15.8 per 1000 catheter-days), the major CRI rate was 1.2% (10 events, 1.6 per 1000 catheter-days), and the catheter-related bloodstream infection rate was 0.9% (8 events, 1.28 per 1000 catheter-days). Semiquantitative insertion-site cultures were performed at removal of 2903 of 3778 catheters. There were no organisms in 1887 cases (65%). Higher median semiquantitative culture counts were associated with colonization (not colonized, 0 [IQR, 0-0]; range, 0 to 106 CFUs/plate) vs colonized, 40 [IQR, 0-100]; range, 0 to 108 CFUs/plate]; \(P < .001 \) and major CRI (no major CRI, 0 [IQR, 0-1; range, 0 to 106 CFUs/plate] vs major CRI, 50 [IQR, 0-100; range, 0 to 108 CFUs/plate]; \(P < .001 \)).

Of the 12882 dressing changes, 5808 (45%) were performed before the planned date because of soiling or leakage. For 1727 arterial catheters, premature dressing changes were more common at the femoral artery (1242/2333 [53.2%]) than at the radial artery (1626/3458 [47.0%]) (\(P < .001 \)). For 2051 CVCs, premature dressing changes were more common at the jugular and femoral veins (1950/4177 [46.7%]) than at the subclavian vein (990/2914 [34.0%]) (\(P < .001 \)).

In the 3-day group, 2652 of 6597 dressing changes (40%) were unplanned. In this group, 639 catheters (37%) were in place for at least 3 days, with no unplanned dressing changes. In the 7-day group, 3156 of 6285 dressing changes (50%) were unplanned. In this group, 200 catheters (10%) were in place for at least 7 days, with no unplanned dressing changes. The skin was considered free from evidence of contact dermatitis in 12717 changes (98.7%). Mild redness was noted at 133 changes (1%), red and slightly thickened skin at 25 changes, and more intense reactions at 5 changes.

There was no significant interaction between the 2 study interventions regarding the rates of catheter colonization (\(P = .53 \)), major CRI (\(P = .19 \)), or catheter-related bloodstream infection (\(P = .36 \)).

CHGIS Dressings vs Control Dressings

Use of CHGIS dressings decreased the major CRI rate from 1.40 per 1000 catheter-days to 0.60 per 1000 catheter-days (hazard ratio [HR], 0.39; 95% CI, 0.17-0.93; \(P = .03 \)) (FIGURE 2). Use of CHGIS dressings significantly decreased the rates of catheter colonization and catheter-related bloodstream infections (**TABLE 3**). The effect was similar for gram-negative and gram-positive organisms (**TABLE 4**) and for arterial catheters and CVCs. Based on these results, use of CHGIS dressings was estimated to prevent 1 major CRI for every 117 catheters (95% CI, 86-
1020 catheters) left in place for a mean duration of 10 days.

The semiqualitative culture count was significantly lower in the CHGIS group (Table 5). The MBC of chlorhexidine was determined for 106 strains cultured from the skin at catheter removal. The median MBC was not different between the control and CHGIS groups (4 [IQR, 4-16] vs 4 [IQR, 4-8], respectively; P = .30). The MBC of chlorhexidine was greater than 32 in 4 of 52 control-group strains (Enterococcus faecalis [2], E facium [1], Providencia stuartii [11]) and 5 of 54 CHGIS-group strains (E faecalis [4], Pseudomonas aeruginosa [1])

Adverse Events

Severe contact dermatitis leading to permanent removal of the CHGIS occurred in 8 patients (10 catheters [10.4 per 1000 patients and 5.3 per 1000 catheters]). The rate of abnormal scores according to the International Contact Dermatitis Research Group system was significantly higher in the CHGIS group (100/6720 [1.49%]) than in the control group (63/5875 [1.02%]) (P = .02). Contact dermatitis usually occurred for only 1 catheter per patient and selectively affected very sick patients with multiple organ failures, subcutaneous edema, and fragile skin. No systemic adverse reactions to chlorhexidine occurred. Skin allergy to the semipermeable transparent dressing was diagnosed in 2 patients (1 in the CHGIS group, 1 in the control group); the lesions resolved after dressing removal.

3-Day vs 7-Day Dressing Changes

In the 3-day group, 2652 of 6597 dressing changes (40%) were unplanned. In this group, 639 catheters (37%) were in place for at least 3 days, with no unplanned dressing changes. In the 7-day group, 3156 of 6285 dressing changes (50%) were unplanned. In this group, 200 catheters (10%) were in place for at least 7 days, with no unplanned dressing changes. The median number of dressing changes was significantly higher in the 3-day group (0.46 [IQR, 0.33-0.63] per catheter-day) than in the 7-day group (0.40 [IQR, 0.25-0.60] per catheter-day) (P < .001). The rate of premature dressing changes was significantly lower in the 3-day group than in the 7-day group (40.2% [2652/6597] vs 50.6% [3156/6285], P < .001).

The rate of catheter colonization (primary criterion) was 7.8% (142 events, 10.4 per 1000 catheter-days) in the 3-day group and 8.6% (168 events, 11.0 per 1000 catheter-days) in the 7-day group (Table 3 and Figure 2). The HR was 0.99 (95% CI, 0.77-1.28) (absolute difference in the rate of significant catheter colonization, 0.8% [95% CI, −1.78% to 2.15%]). Thus, the 7-day dressing changes met the prespecified criteria for noninferiority, compared with the 3-day dressing changes. The estimated HR was similar for CVCs (0.94 [95% CI, 0.70-1.27]) and arterial catheters (1.07 [95% CI, 0.75-1.53]).

In the sensitivity analyses, results were inconclusive for arterial catheters only and for catheters with at least 2 unplanned dressing changes. Otherwise, the sensitivity analyses were consistent with noninferiority. In particular, the absolute difference in the rate of significant catheter colonization was 0.6% (95% CI, −1.97% to 2.37%) in the per-protocol population.

Figure 1. Flow of Patients Through the Study

CHGIS indicates chlorhexidine gluconate-impregnated sponge; DTP, differential time to positivity; ICU, intensive care unit.

©2009 American Medical Association. All rights reserved.
In the subgroup of 2416 catheters left in place for at least 5 days, the catheter colonization rate in the 3-day group was 9.8% (114 events, 9.7 per 1000 catheter-days) vs 10.8% in the 7-day group (135 events, 10.3 per 1000 catheter-days) (HR, 0.98 [95% CI, 0.74-1.30]; P = .88). The median number of dressing changes per catheter-day was 0.43 (IQR, 0.33-0.60) in the 3-day group and 0.37 (IQR, 0.25-0.55) in the 7-day group, a 14% decrease.

There was a slight but statistically significant trend for higher skin colonization counts by semiquantitative skin culture at catheter removal in the 7-day group compared with the 3-day group (Table 5). The number of major CRIs was 12 (0.66 per 1000 catheter-days) in the 3-day group and 17 (0.87 per 1000 catheter-days) in the 7-day group (HR, 1.16 [95% CI, 0.49-2.69]; P = .74; difference, 0.21% [95% CI, −0.33% to 1.11%]).

COMMENT

We found that use of CHGIS dressings decreased the risk of major catheter-related infections by 60% despite a low baseline infection rate. The incidence of skin lesions with the CHGIS dressings was lower than that in prior reports, but contact dermatitis will occur occasionally and requires prompt removal of the CHGIS. We also found that a strategy of weekly scheduled dressing changes for nonsoiled, adherent dressings was not inferior to a standard 3-day dressing change. However, unscheduled dressing changes for soil- ing and leakage were common, and the absolute reduction in number of dressing changes was modest.

Most of the measures recommended for preventing CRI were used in our study centers, in keeping with the low rate of major CRI in the 3-day control group without CHGIS dressings. This low baseline rate is noteworthy, given the inclusion of severely ill patients, as shown by the high Simplified Acute Physiology Score II and Sequential Organ Failure Assessment scores at ICU admission and the large proportion of ventilated patients. The baseline rate was less than the predicted 4% rate used to compute the sample size for establishing the superiority of CHGIS dressings. Fortunately, the sample size required for demonstrating noninferiority of the 7-day dressing-change interval compared with the 3-day interval was large, so we had enough patients to establish the superiority of CHGIS dressings over standard dressings for decreasing major CRI rates.

Most studies of devices designed to decrease CRI (eg, antiseptic- or antibiotic-impregnated catheters) were performed in ICUs in which baseline CRI rates were at the higher end of the reported range. In this setting, simple preventive measures may be as effective as new devices. Thus, the 2002 guidelines from the Centers for Disease Control and Prevention recommend antiseptic- or antibiotic-impregnated catheters only in ICUs in which catheter-related infection rates are above benchmark rates despite implementation of a comprehensive strategy to decrease the rates. We found that the CHGIS was effective in decreasing major CRI, despite low baseline infection rates. Our results therefore suggest that technical devices as well as a set of simple preventive measures may be useful for preventing major CRIs in ICUs.

A randomized study comparing dressings every 4 days and every 15 days in children undergoing chemotherapy found no differences in the rates of positive skin culture results or bloodstream infections. Another study in re-
cipients of bone marrow transplants found that dressing changes every other day were associated with significantly greater skin toxicity than were changes every 5 or 10 days.15 Neither study was conducted in ICUs. The catheter colonization rate in our study was not different in patients with dressing changes every 3 days or every 7 days. Neither were the rates of major CRI or catheter-related bloodstream infections significantly different between the groups. However, more than half of the catheters were removed before day 6, and approximately 40% of dressing changes were related to separation of the dressing from the skin. Extending the theoretical dressing change interval from 3 to 7 days resulted in only a 9% decrease in the number of changes per catheter-day. However, the interval between changes decreased the number of changes by 14% for catheters left in place for more than 4 days.

One possibility is that dressing changes during the study were performed even when minimal separation occurred. The small actual increase in dressing change intervals in our 7-day group indicates that extending the theoretical interval by 1 day decreased the number of changes by 14% for catheters left in place for more than 4 days.

Table 2. Catheter Characteristics

<table>
<thead>
<tr>
<th>Variable</th>
<th>All Catheters, ITT Analysis (N = 3778)</th>
<th>Dressing Change Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control (n = 1825)</td>
<td>CHGIS (n = 1953)</td>
</tr>
<tr>
<td>Time in place, median (IQR), d</td>
<td>6 (4-10)</td>
<td>6 (4-10)</td>
</tr>
<tr>
<td>Experience of the operator</td>
<td></td>
<td></td>
</tr>
<tr>
<td><50 procedures</td>
<td>2586 (68.4)</td>
<td>1221 (66.9)</td>
</tr>
<tr>
<td>≥50 procedures</td>
<td>1135 (30.1)</td>
<td>578 (31.7)</td>
</tr>
<tr>
<td>Junior operator with help from a senior</td>
<td>57 (1.5)</td>
<td>26 (1.4)</td>
</tr>
<tr>
<td>Arterial catheter</td>
<td>1727 (45.7)</td>
<td>830 (45.5)</td>
</tr>
<tr>
<td>Femoral</td>
<td>708 (41)</td>
<td>355 (42.8)</td>
</tr>
<tr>
<td>Radial</td>
<td>1019 (59)</td>
<td>475 (57.2)</td>
</tr>
<tr>
<td>Venous Catheters Only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venous catheter</td>
<td>2051 (54.3)</td>
<td>995 (54.5)</td>
</tr>
<tr>
<td>Jugular</td>
<td>560 (27.3)</td>
<td>248 (24.9)</td>
</tr>
<tr>
<td>Subclavian</td>
<td>819 (39.9)</td>
<td>407 (40.9)</td>
</tr>
<tr>
<td>Femoral</td>
<td>672 (32.8)</td>
<td>340 (34.2)</td>
</tr>
<tr>
<td>Guidewire exchange</td>
<td>85 (4.1)</td>
<td>28 (2.8)</td>
</tr>
<tr>
<td>No. of lumens in venous catheters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>37 (1.8)</td>
<td>21 (2.1)</td>
</tr>
<tr>
<td>2</td>
<td>209 (10.2)</td>
<td>110 (11.1)</td>
</tr>
<tr>
<td>3</td>
<td>1805 (88)</td>
<td>864 (86.8)</td>
</tr>
<tr>
<td>Use of lipids</td>
<td>777 (37.9)</td>
<td>379 (38.1)</td>
</tr>
<tr>
<td>Use of heparin</td>
<td>708 (34.5)</td>
<td>336 (33.8)</td>
</tr>
<tr>
<td>Packaged red blood cells transfused</td>
<td>602 (29.4)</td>
<td>266 (26.7)</td>
</tr>
<tr>
<td>Tunneded catheters</td>
<td>6 (0.3)</td>
<td>5 (0.5)</td>
</tr>
<tr>
<td>Antimicrobials at catheter insertion</td>
<td>2532 (67)</td>
<td>1208 (66.2)</td>
</tr>
<tr>
<td>Transport with catheter(s) in placea</td>
<td>3004 (79.5)</td>
<td>1448 (79.3)</td>
</tr>
<tr>
<td>0</td>
<td>559 (14.8)</td>
<td>255 (14)</td>
</tr>
<tr>
<td>2</td>
<td>160 (4.2)</td>
<td>90 (4.9)</td>
</tr>
<tr>
<td>>2</td>
<td>55 (1.5)</td>
<td>32 (1.8)</td>
</tr>
<tr>
<td>No. of dressing changes per catheter, median (IQR)</td>
<td>3 (1-5)</td>
<td>3 (1-5)</td>
</tr>
<tr>
<td>Local signs at catheter removal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>3416 (90.4)</td>
<td>1666 (91.3)</td>
</tr>
<tr>
<td>Redness</td>
<td>321 (8.5)</td>
<td>139 (7.6)</td>
</tr>
<tr>
<td>Pain</td>
<td>10 (0.3)</td>
<td>2 (0.1)</td>
</tr>
<tr>
<td>Nonpurulent discharge</td>
<td>42 (1.1)</td>
<td>20 (1.1)</td>
</tr>
<tr>
<td>Purulent discharge</td>
<td>15 (0.4)</td>
<td>6 (0.3)</td>
</tr>
<tr>
<td>Catheter removal for suspected infection</td>
<td>667 (17.7)</td>
<td>325 (17.8)</td>
</tr>
</tbody>
</table>

Abbreviations: CHGIS, chlorhexidine gluconate-impregnated sponge; IQR, interquartile range; ITT, intention-to-treat. aTransport of patient for imaging studies or surgery with the catheter in place.
interval to 7 days requires that the dressings be monitored closely and changed in the event of soiling or separation.

Use of CHGIS dressings was effective in decreasing major CRI. The effect size was similar for the primary end point, ie, major CRI, and the secondary end point, ie, catheter colonization. Our results confirm those of several studies performed in neonatal ICUs,28 adult ICUs, or hematology units.31 A meta-analysis showed a significant decrease in catheter colonization with CHGIS dressings but only a nonsignificant decrease in catheter-related bloodstream infection rates, possibly because of the small sample size and differences across included studies.13

Chlorhexidine gluconate is a critical component of interventions designed to prevent the dissemination of nosocomial infections.12 In vitro studies suggest that chlorhexidine exposure may cause reduced susceptibility to antibiotics and biocides via intrinsic or acquired mechanisms of resistance.33 At present, insufficient scientific evidence exists to evaluate these risks, and additional studies are needed. However, in keeping with previous studies,34,35 we found no evidence of bacterial resistance to chlorhexidine. Moreover, chlorhexidine concentrations beneath the dressing remain substantially higher than the concentrations that might promote the development of resistant strains for more than 7 days.33

Our randomized study is the largest to date evaluating dressings incorporating a CHGIS for prevention of major CRI. In addition, it was a multi-center study with a mix of medical and surgical ICUs in university and non-university hospitals. Furthermore, nearly all of the eligible patients were included, and few patients and catheters were lost to follow-up. All cases of suspected CRI or colonization were reviewed by a panel of blinded assessors to ensure valid assessment of the primary end point. Therefore, our results can reasonably be generalized to

Figure 2. Cumulative Risk of Catheter-Related Infection and Catheter Colonization

Table 3. Hazard Ratios in the Intention-To-Treat and Per-Protocol Analyses

<table>
<thead>
<tr>
<th>Variable</th>
<th>Dressing Change Interval</th>
<th>Incidence, No./1000 Catheter-Days</th>
<th>ITT Analysis</th>
<th>Per-Protocol Analysisa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catheter colonization >10 CFUs/plate</td>
<td>Control (n = 1823)</td>
<td>15.8 (0.28-0.46)</td>
<td>0.36 (.03</td>
<td>0.35 (.03</td>
</tr>
<tr>
<td>Catheter-related bloodstream infection</td>
<td>CHGIS (n = 1953)</td>
<td>6.3 (0.09-0.69)</td>
<td>0.24 (.03</td>
<td>0.24 (.03</td>
</tr>
<tr>
<td>Major catheter-related infection</td>
<td>Control (n = 1815)</td>
<td>1.3 (0.09-0.63)</td>
<td>0.24 (.03</td>
<td>0.24 (.03</td>
</tr>
<tr>
<td>Catheter colonization >10 CFUs/plate</td>
<td>CHGIS (n = 1963)</td>
<td>1.4 (0.16-0.92)</td>
<td>0.38 (.03</td>
<td>0.38 (.03</td>
</tr>
<tr>
<td>Catheter-related bloodstream infection</td>
<td>Control (n = 1815)</td>
<td>1.4 (0.16-0.92)</td>
<td>0.38 (.03</td>
<td>0.38 (.03</td>
</tr>
<tr>
<td>Major catheter-related infection</td>
<td>CHGIS (n = 1963)</td>
<td>1.4 (0.16-0.92)</td>
<td>0.38 (.03</td>
<td>0.38 (.03</td>
</tr>
</tbody>
</table>

Abbreviations: CFU, colony-forming unit; CHGIS, chlorhexidine gluconate-impregnated sponge; CI, confidence interval; HR, hazard ratio; ITT, intention-to-treat.

aAnalysis adjusted on imbalanced parameters (ie, presence of ≥1 chronic disease for comparison of control and CHGIS groups).

Downloaded from www.jama.com by guest on March 26, 2009
all severely ill ICU patients expected to require CVCs for short periods.

Skin cultures samples obtained before catheter removal showed a significant decrease in bacterial skin colonization with CHGIS dressings compared with controls. The rates of catheter colonization and major CRI correlated significantly with the burden of bacterial skin contamination. These data support the biologically plausible mechanism of action of CHGIS. We detected no change in the profile of microorganisms recovered from skin samples and colonized catheters. An increase in the MBCs of the most resistant strains cannot be completely excluded, however, and studies of larger bacteriological samples are needed to further investigate this point.

The number needed to treat with CHGIS dressings was 117 catheters (95% CI, 86-1020). Treatment for 10 days usually requires 3 dressings, each of which costs US $6 (2007 dollars), and the cost of preventing a single episode of major CRI can be estimated at $2106 (95% CI, $1518-$18 360). The cost of managing a single case of major CRI ranges from $8000 to more than $28 000, suggesting that CHGIS dressings may be cost saving.

Our study has several limitations. First, double-blinding was not feasible, because visually identical sponges without chlorhexidine were not available and the nurses had to be informed of the dressing change interval. However, a blinded procedure was used for the catheter cultures. Most importantly, independent assessors conducted a blind review of all suspected catheter infections.

Second, major CRI, particularly without bacteremia, may be difficult to diagnose, most notably in ICU patients. However, major CRI was assessed by investigators blinded to the study group, and the results were similar when we used other end points such as catheter colonization or catheter-related bloodstream infection.

Third, 6.5% of catheters were not cultured, either because the patients left the ICU with the CVCs in place or because technical problems arose. This rate compares favorably with rates from the largest randomized studies on the prevention of CRIs.10,37

Fourth, alcohol-based povidone iodine was used for skin antisepsis and catheter dressings in all centers. Chlorhexidine has been found more effective than a single application of non–alcohol-based povidone iodine,17,36,39 and the use of chlorhexidine for skin antisepsis is included in recommendations for preventing CRI. Unfortunately, aqueous 2% chlorhexidine was not commercially available in France at the beginning of our study. Furthermore, alcohol-based povidone iodine has been shown more effective than non–alcohol-based povidone iodine in decreasing catheter colonization in ICUs,40 and no study compared alcohol-based povidone iodine with chlorhexidine in aqueous or alcohol-based solution. Nevertheless, using chlorhexidine for skin antisepsis might have further reduced CRI rates in the control group.

In conclusion, the interval between dressing changes can be safely ex-

Table 4. Primary and Secondary End Points According to Intervention

<table>
<thead>
<tr>
<th>Variable</th>
<th>All Catheters, ITT Analysis (N = 3778)</th>
<th>Control (n = 1825)</th>
<th>CHGIS (n = 1953)</th>
<th>3 d (n = 1815)</th>
<th>7 d (n = 1963)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major catheter-related infectiona</td>
<td>29 (0.8) 213 (5.7) 97 (5.6) 142 (7.8) 168 (8.6)</td>
<td>16 (5) 14 (7) 2 (5) 7 (5) 9 (5)</td>
<td>153 (49) 106 (50) 47 (50) 73 (50) 80 (49)</td>
<td>310 (8.2) 213 (11.7) 97 (5) 142 (7.8) 168 (8.6)</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>5 (17) 4 (20) 1 (10) 1 (8) 4 (23)</td>
<td>10 (17) 4 (20) 1 (10) 1 (8) 4 (23)</td>
<td>1 (3) 1 (2) 0 (0) 1 (8) 0 (0)</td>
<td>1 (3) 1 (2) 0 (0) 1 (8) 0 (0)</td>
<td></td>
</tr>
<tr>
<td>Coagulase-negative staphylococci</td>
<td>4 (14) 2 (4) 2 (20) 2 (17) 2 (12)</td>
<td>1 (3) 1 (2) 0 (0) 1 (8) 0 (0)</td>
<td>1 (3) 1 (2) 0 (0) 1 (8) 0 (0)</td>
<td>1 (3) 1 (2) 0 (0) 1 (8) 0 (0)</td>
<td></td>
</tr>
<tr>
<td>Other gram-positive cocci</td>
<td>1 (3) 1 (2) 0 (0) 1 (8) 0 (0)</td>
<td>1 (3) 1 (2) 0 (0) 1 (8) 0 (0)</td>
<td>1 (3) 1 (2) 0 (0) 1 (8) 0 (0)</td>
<td>1 (3) 1 (2) 0 (0) 1 (8) 0 (0)</td>
<td></td>
</tr>
<tr>
<td>Pseudomonas spp</td>
<td>9 (31) 4 (19) 3 (30) 4 (33) 10 (59)</td>
<td>1 (3) 1 (2) 0 (0) 1 (8) 0 (0)</td>
<td>1 (3) 1 (2) 0 (0) 1 (8) 0 (0)</td>
<td>1 (3) 1 (2) 0 (0) 1 (8) 0 (0)</td>
<td></td>
</tr>
<tr>
<td>Enterobacter spp</td>
<td>14 (48) 11 (58) 3 (30) 4 (33) 10 (59)</td>
<td>1 (3) 1 (2) 0 (0) 1 (8) 0 (0)</td>
<td>1 (3) 1 (2) 0 (0) 1 (8) 0 (0)</td>
<td>1 (3) 1 (2) 0 (0) 1 (8) 0 (0)</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>1 (3) 1 (2) 0 (0) 1 (8) 0 (0)</td>
<td>1 (3) 1 (2) 0 (0) 1 (8) 0 (0)</td>
<td>1 (3) 1 (2) 0 (0) 1 (8) 0 (0)</td>
<td>1 (3) 1 (2) 0 (0) 1 (8) 0 (0)</td>
<td></td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td>1 (3) 1 (2) 0 (0) 1 (8) 0 (0)</td>
<td>1 (3) 1 (2) 0 (0) 1 (8) 0 (0)</td>
<td>1 (3) 1 (2) 0 (0) 1 (8) 0 (0)</td>
<td>1 (3) 1 (2) 0 (0) 1 (8) 0 (0)</td>
<td></td>
</tr>
<tr>
<td>Catherer colonization = 10^6 CFUs/mLa</td>
<td>310 (8.2) 213 (11.7) 97 (5) 142 (7.8) 168 (8.6)</td>
<td>16 (5) 14 (7) 2 (5) 7 (5) 9 (5)</td>
<td>153 (49) 106 (50) 47 (50) 73 (50) 80 (49)</td>
<td>310 (8.2) 213 (11.7) 97 (5) 142 (7.8) 168 (8.6)</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Relationship Between Semiquantitative Skin Culture and Study Groupsa

<table>
<thead>
<tr>
<th>Culture</th>
<th>All Catheters (n = 2903)</th>
<th>Control (n = 1358)</th>
<th>CHGIS (n = 1545)</th>
<th>3 d (n = 1386)</th>
<th>7 d (n = 1517)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sterile</td>
<td>1887 (65.0) 786 (57.8) 1101 (71.3) 935 (67.5) 952 (62.7)</td>
<td>148 (10.9) 178 (11.5) 168 (12.1) 158 (10.4)</td>
<td>148 (10.9) 178 (11.5) 168 (12.1) 158 (10.4)</td>
<td>148 (10.9) 178 (11.5) 168 (12.1) 158 (10.4)</td>
<td></td>
</tr>
<tr>
<td>1-9 CFUs/plate</td>
<td>326 (11.2) 148 (10.9) 178 (11.5) 168 (12.1) 158 (10.4)</td>
<td>148 (10.9) 178 (11.5) 168 (12.1) 158 (10.4)</td>
<td>148 (10.9) 178 (11.5) 168 (12.1) 158 (10.4)</td>
<td>148 (10.9) 178 (11.5) 168 (12.1) 158 (10.4)</td>
<td></td>
</tr>
<tr>
<td>10-99 CFUs/plate</td>
<td>462 (15.9) 261 (19.2) 201 (13) 183 (13.2) 279 (18.4)</td>
<td>148 (10.9) 178 (11.5) 168 (12.1) 158 (10.4)</td>
<td>148 (10.9) 178 (11.5) 168 (12.1) 158 (10.4)</td>
<td>148 (10.9) 178 (11.5) 168 (12.1) 158 (10.4)</td>
<td></td>
</tr>
<tr>
<td>≥100 CFUs/plate</td>
<td>228 (7.9) 163 (12) 65 (4.2) 100 (7.2) 128 (8.4)</td>
<td>148 (10.9) 178 (11.5) 168 (12.1) 158 (10.4)</td>
<td>148 (10.9) 178 (11.5) 168 (12.1) 158 (10.4)</td>
<td>148 (10.9) 178 (11.5) 168 (12.1) 158 (10.4)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CFU, colony-forming unit; CHGIS, chlorhexidine gluconate–impregnated sponge; ITT, intention-to-treat. a More than 1 microorganism recovered in some cases.
tended to more than 3 days but not exceeding 7 days, provided the dressings are closely monitored and changed immediately should separation or soiliness be detected. Furthermore, use of CHGIS dressings decreases the rate of major CRI when the baseline rate is lower than 2 per 1000 catheter-days.

Members of the Dressing Study Group (in alphabetical order): Invited investigators (Paris, Bichat-Claude Bernard): Antonio Alvarez (Delafontaine Hospital), Claire Ara-Somohano (Grenoble), Cécile Aubron (Clichy, Beaujon), Didier Barnoud (Grenoble), Dominique Baron (Grenoble), Laure Benayoun (Clichy, Beaujon), Abdel Benhamou (Clichy, Beaujon), Agnes Bonadonna (Grenoble), Claire Bonneville (Clichy, Beaujon), Regis Bronchard (Paris, Bichat-Claude Bernard), Christophe Broux (Grenoble), Jean-Claude Broux (Paris, St Joseph), Cyrille de Vaumas (Paris, Bichat-Claude Bernard), Philippe Declety (Grenoble), Géraldine Dessertaine (Grenoble), Dominique Falcon (Grenoble), Luis Ferrera (Paris, Bichat-Claude Bernard), Céline Francony (Grenoble), Stephane Freneau (Grenoble), Stefi Gasciolli (Clichy, Beaujon), Mathieu Gna (Clichy, Beaujon), Rebecca Hamidifar-Roy (Grenoble), Laure Hammer (Grenoble), Jean Haouache (Grenoble), Jerome Hanna (Grenoble), Claude Jaquot (Grenoble), Nathalie Kermaek (Paris, Bichat-Claude Bernard), Karim Lakhal (Clichy, Beaujon), Sigismund Lasocki (Paris, Bichat-Claude Bernard), Pierre Lavagne (Grenoble), Yves Leport (Paris, Bichat-Claude Bernard), Benoit Misset (Paris, St Joseph), Philippe Montraux (Paris, Bichat-Claude Bernard), Bruno Mourier-Vallier (Paris, Bichat-Claude Bernard), Catherine Paugam (Clichy, Beaujon), Francois Philippard (Paris, St Joseph), Aymeric Rouchoux (Clichy, Beaujon), Alexis Tabah (Grenoble), Pierre Trouiller (Clichy, Beaujon), Vincent Willemot (Grenoble), and Wolf Peter (Paris, Bichat-Claude Bernard). Study monitors, research nurses, and microbiology technicans: Caroline Broussard, Silvia Calvino, Monia Falhim, Flavoriene Goyer, Nadra Khamis, Daria Manouet, Sylvie Riviere, and Karima Sehil. Statistics: Adrien Franc¸ois, Aurelien Velin, Valerie Siroux, Jean-Francois Titard (all of INSERM U823, Grenoble, France). Data and safety monitoring committee: Xavier Arraudeau (PharmD, Bichat-Claude Bernard, Paris), Vincent Descamps (Dermatologist, Paris, Bichat-Claude Bernard), Marie-Reine Mallaret (Bioclinical Research: present status of implementation in EU member states’ legislations with regard to the incompetent patient. Intensive Care Med. 2005;31(3):476–479.

